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1. Introduction

Eleven dimensional supergravity [1] and its symmetries constitute a privileged access to

the study of M–Theory as the former is believed to be the low energy limit of the latter.

There are some hints indicating the possibility that the symmetry group of M–Theory is

represented by infinite dimensional Kač–Moody group E11.

The first hint in this direction is that the U–duality group of maximal supergravities

in D ≥ 3 dimensions is given by the exceptional group series1 E11−D(11−D) [2]. Maximal

supergravities in D dimensions can be obtained form T11−D compactification of the D = 11

supergravity, nevertheless the SL(11−D, R) symmetries induced by the T11−D are just part

of the exceptional groups symmetries they feature.

Going down to D < 3 leads to U–duality groups which are no more finite dimen-

sional [3] but they are the Kač–Moody groups E9(9), E10(10) and E11(11), that is the affine

extension, the over extension and the very extension of E8(8) respectively. This suggests

that a plausible scenario is that the D = 11 supergravity itself features an E11(11) hidden

symmetry.

There have been several proposals for non linear formulation of the D = 11 super-

gravity [4, 5], in particular as non–linear realizations of E10 or E11 [6 – 9]. In [7 – 9] an

1We use the notation E1 = R, E2 = GL(2, R), E3 = SL(2, R) × SL(3, R), E4 = SL(5, R), E5 = O(5, 5).

With Ep(p) we indicate the real section of Ep with p non compact generators, that is with the maximum

number of non compact generators. For simplicity of notation in the following with will indicate it just

with Ep.
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action based on the coset space E10/K(E10) was considered, K(E10) being the maximally

compact subgroup of E10. This is a natural generalization of the U–duality invariant action

of the scalar σ–model ED−11(D−11)/K(ED−11(D−11)) in D–dimensional supergravity.

Implications of this underlying larger symmetries can also be found in some cosmolog-

ical solutions exhibiting billiard phenomenon [10, 11] .

More recently, it has been shown [12] that the supersymmetry transformation laws

of IIA supergravity, after suitable field dependent redefinitions of the gauge fields and

the gauge parameters, become linear in the gauge fields while the resulting gauge algebra

reproduces the lowest levels of E11.

In the present paper we will look for E11 symmetries in D = 11 supergravity, taking

as a starting point the D = 11 Free Differential Algebra (FDA) [13].

Free Differential Algebras [14], which are a generalization of the concept of Lie al-

gebras, turn out to be relevant for the construction of higher dimensional supergravities

where the supermultiplets contain p–form potentials, with p > 1. In fact, for p = 1 the

gauge potentials are associated to the one–forms dual to the Lie algebra generators of the

symmetry group of the theory [15]. For p > 1 the p–form potentials are associated to the

p–form generators of a suitable Free Differential Algebra encoding the symmetries of the

theory.

The minimal D = 11 FDA consists of the Maurer–Cartan equations of the D = 11

super Poincaré algebra plus a generalized Maurer–Cartan equation for the three–form C.

It is well known [13] that the minimal D = 11 FDA can be reduced to a set of ordinary

Maurer–Cartan equations describing an extension of the D = 11 super Poincaré algebra,

via the expansion of the three–form C in terms of the one–forms dual to the generators.

Inspired by this observation we consider Sezgin’s M–Algebra [16] which is the most

general extension of the D = 11 super Poincaré algebra and check whether the minimal

D = 11 FDA can be reduced to it. As we are considering the minimal D = 11 FDA,

that is when all the curvatures and field strengths are zero2, we have to be consistent

with a flat background, and therefore forced to avoid non–commuting translations. This

constraint leads to an Inönü–Wigner contraction of the M–Algebra which we will show

to be a reduction of the minimal D = 11 FDA. This is the main result we will present:

beside showing how the M–Algebra naturally arises in D = 11 supergravity, we provide

the general structure for a candidate flat background superfivebrane Wess–Zumino term.

The next step is the analysis of the complete D = 11 FDA, that is in the presence of

nonzero curvatures and field strengths (= contractible generators). For this more general

case it has not yet been proven whether exists the possibility to reduce it to an algebra,

neither we will prove it now. We will limit ourselves to consider the simplest case, that is

flat background where just the super filed strength F of the three–form is present, and to

analyze it at the bosonic level.

In spite of the simplification, this example indicates that in order to find an expansion

for F we have to consider the automorphism algebra acting on the M–Algebra and expand

2For a definition of minimal and contractible FDA and their relations with D = 11 supergravity, see

e.g. [17]. In the present paper we will have a minimal FDA whenever the curvatures and field strengths,

representing the contractible generators, are vanishing.
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F in terms of its dual generators. The automorphism algebra [18, 19] needed for the

bosonic part of F in flat background, turns out to coincide with the lowest levels of E11.

This partial result suggests that the E11 symmetry is already encoded in the D = 11 FDA

and in order to make it manifest one needs to reduce the FDA to an algebra.

The paper is organized as follows:

In section 2, after recalling the basic ideas about minimal Free Differential Algebras,

we perform the reduction of the minimal D = 11 FDA to the maximal Inönü–Wigner

contraction of the M–Algebra allowing for commuting translations.

In section 3 we present the general D = 11 FDA and discuss the treatment of the

contractible generators. We focus on the bosonic components of the three–form super field

strength F and show that the bosonic D = 11 FDA in flat background can be reduced to

the lowest levels of E11.

In section 4 we draw our conclusions and discuss future perspectives.

In appendix A we list the Fierz identities needed for the reduction of the minimal

D = 11 FDA.

In appendix B we write explicitly the system of equations for the coefficients of the

expansion of the three–form C and its solutions.

In appendix C we report the rheonomic parametrizations for the D = 11 supercurva-

tures and their relation with supersymmetry transformation laws.

2. The composite nature of the D = 11 three–form

2.1 Reduction of the minimal D = 11 FDA to an ordinary algebra

It is well known that there are two equivalent ways to locally characterize a (super) Lie

group manifold G.

One is by means of the commutation relation between the basis elements {TA} of its

tangent space T G, A = 1, . . . dimG

[TA, TB} = CC
ABTC , (2.1)

that is its associated (super) Lie algebra, or via the Maurer–Cartan equations (MCE) on

the basis elements {µA} of its cotangent space T ∗G

dµA −
1

2
CA

CB µB ∧ µC = 0 , (2.2)

where the dual basis is defined canonically by µA(TB) = δA
B .

The Jacobi identities

CA
B[CCB

DE} = 0 (2.3)

are respectively obtained from

[T[A, [TB , TC}}} = 0; d

(

dµA −
1

2
CA

CB µB ∧ µC

)

= 0 (2.4)
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The formulation in terms of Maurer–Cartan equations turns out to be more appropriate

for the construction of a supergravity theory with the geometric approach [15], since the

fundamental fields are directly associated to the one–forms µA.

In the specific case of D = 11 supergravity [1], on–shell supersymmetry is realized on

the following set of fields

(gµν , ψµ, Cµνρ) µ, ν, ρ = 0, . . . 10 . (2.5)

One can describe the gravitational degrees of freedom gµν by means of the vielbein V a and

the spin connection ωab (a, b = 0, . . . 10), defined as the one–forms dual to the translation

generators Pa and the Lorentz generators Mab respectively; the gravitino ψ is defined as the

one–form dual to the supersymmetry generator Q. In the Minkowski vacuum they satisfy

the Maurer–Cartan equations of the eleven dimensional super Poincaré algebra3 [13] whose

closure under d differentiation, (2.4), is trivially checked:

T a ≡ DV a −
i

2
ψ̄γaψ = 0 (2.6)

Rab ≡ dωab − ωa
cω

cb = 0 (2.7)

ρ ≡ Dψ = 0 , (2.8)

Equations (2.6) and (2.7) respectively define the supertorsion T a and the riemaniann super-

curvature Rab of the superspace, while equation (2.8) defines the gravitino supercurvature

ρ. The structure of Maurer–Cartan equations (2.2) of (2.6)–(2.8) is due to the fact that in

the Minkowski background T a = Rab = ρ = 0. The ”covariant derivatives” are defined as

follows:

DV a ≡ dV a − ωabVb; Dψ ≡ dψ −
1

4
ωabγabψ (2.9)

Let us point out that, at present, (2.9) is just a formal definition which does not have

the meaning of covariant derivative. Indeed, the one–forms (V a, ωab, ψ) are all defined

as sections of the cotangent space T ∗G and depend on the coordinates (xa, xab, θ) of the

supergroup manifold. More precisely, xa are the ordinary space–time coordinates associated

to translations, while θ is a 32 component Majorana spinor describing the grassmannian

coordinates which together with the xa parametrize the ordinary D = 11 superspace;

the xab are associated to the Lorentz subgroup and physical fields should not depend

on them. In order to recover the ordinary superspace, where ωab plays the role of spin

connection and the fields only depend on the superspace coordinates {xa, θ}, one has to

impose horizontality with respect to the subgroup SO(1, 10) [15]; this is tantamount saying

that the theory is formulated on a coset manifold G/H where G = super–Poincaré and

H =Lorentz.

Here and in the following, we will always refer to the group manifold G without impos-

ing horizontality with respect to Lorentz , which is meant to be imposed in a second step

if one wants to recover a superspace formulation; nevertheless we will refer to ”covariant

3Here and in the following the symbol of wedge product ”∧” between p–forms is suppressed in order to

simplify the notation.
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derivatives”, ”torsion”, ”curvature”, etc. keeping in mind the previous disclaimer. This ap-

plies as well when we will consider extensions G̃ of the group manifold G; horizontality with

respect to its maximal compact subgroup H̃ ≡ K(G̃) is meant to be imposed afterwards.

In order to be able to include the three–form field Cµνρ one needs to extend the super

Lie algebra (2.6)–(2.8) to a Free Differential Algebra [13]. For our purposes we need an

SO(1, 10) singlet four–form that is closed but not exact in Λ4(T
∗G). The only choice

compatible with a linear realization of supersymmetry is [15]:

w(4) = ψ̄γabψV aV b (2.10)

whose closure dw(4) = 0 can be checked using the Fierz identity (A.16), and equations (2.6)

and (2.8).

The four–form w(4) is not exact on Λ4(T
∗G), but by enlarging the group manifold G

to a suitable manifold G̃, one can introduce a three–form C on Λ3(T
∗G̃) which satisfies:

F ≡ dC −
1

2
ψ̄γabψV aV b = 0 (2.11)

such that (2.6)–(2.8) together with (2.11) are closed under d differentiation: the resulting

structure is a minimal FDA.

One can further extend the FDA (2.6)–(2.8), (2.11) in order to include the six–form

dual to C (see [13, 17] for a complete discussion), but we will not consider such a formu-

lation, as its treatment is beyond the scope of the present paper.

Since in the minimal FDA the supercurvatures of the D = 11 fields are identically zero

T a = Rab = ρ = F = 0, and in particular Rab = 0, we can set the trivial spin connection to

zero ωab = 0, thus reducing the covariant derivatives (2.9) to ordinary ones. Furthermore

we can also neglect equation (2.7) and reduce to the following minimal FDA, based on an

extension G̃0 of the super translational group manifold G0 (equations (2.12), (2.13) below)

dV a −
i

2
ψ̄γaψ = 0 (2.12)

dψ = 0 (2.13)

dC −
1

2
ψ̄γabψV aV b = 0 (2.14)

It is quite natural to wonder if G̃0 can be realized as a group manifold. This is tantamount

to say that, denoting by

{σi} ⊃ {V a , ψ}, i = 1 . . . dim G̃0 (2.15)

the basis of T ∗G̃0, they satisfy

dσi −
1

2
ci

kj σj ∧ σk = 0, d

(

dσi −
1

2
ci

kj σj ∧ σk

)

= 0 (2.16)

with constant ci
kj, in such a way that (2.12), (2.13) are included in (2.16). If this is the

case it is possible to express C as

C = Kijkσ
iσjσk , (2.17)
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where the constants Kijk are determined by imposing (2.14) and using (2.16). This corre-

sponds to the statement that (2.16) is an algebra equivalent to the FDA (2.12)–(2.14) [13].

The group G̃0 corresponding to the FDA (2.12)–(2.14) may be not unique [25].

In fact, the question whether the minimal D = 11 FDA is equivalent to an ordinary

algebra, was first addressed in [13] and solved introducing as new one–forms two bosons

Bab, Ba1...a5 and one fermion η. The two new bosonic one–forms turn out to be dual to

the central charges generators Zab, Za1...a5

{Qα, Qβ} = iγa
αβPa + γab

αβZab + iγa1...a5
αβ Za1...a5 (2.18)

Afterwards [20, 21] it was shown that in the framework of [13] there exist a whole class

of solutions, in particular in the absence of Ba1...a5 . More recently [22 – 24] a different

approach was proposed that make use of “extended” Lie derivatives along antisymmetric

tensors. A solution was derived in terms of Bab and a fermion ηa carrying a Lorentz

index plus a further bosonic generator4 Σαβ. It was also pointed out that this latter Σαβ

generator vanishes for null curvatures, in particular for a trivial spin connection.

In spite of the evidence that there is no unique algebra which corresponds to the mini-

mal D = 11 FDA, one can ask which is the biggest extension T G̃0 of the super translational

algebra (2.12), (2.13) which can satisfy (2.14). The most general extension of the super

translational algebra is represented by the M–Algebra proposed by Sezgin [16]. Encour-

aged by the fact that all the previous results [13, 23, 26 – 28] represent particular cases of

the M–Algebra, in the next subsection 2.2 we will investigate if the D = 11 FDA can be

reduced to the latter.

2.2 The M–Algebra from the D = 11 minimal FDA

In this section we are going to discuss whether the D = 11 minimal FDA can be reduced to

the M–Algebra [16]. In order to do that, we have to write (2.17) in terms of the one–forms

dual to the M–Algebra’s generators and afterwards see if there exist constants Kijk such

that (2.14) is satisfied once the Maurer–Cartan equation of the M–Algebra are used.

As is evident from equation (2.14), the expression for the three–form C can be just

determined up to closed three–forms. Therefore we will not include in our ansatz for C

forms like [16]

w(3) = V a ψ̄γaψ − (1 − λ − τ)Ba ψ̄γaψ + i
λ

10
Babψ̄γabψ +

τ

720
Ba1...a5ψ̄γa1...a5ψ (2.19)

whose closure can be checked using the Fierz identity (A.13)

The M–Algebra [16] can be obtained by subsequent central extensions of the algebra

(2.12), (2.13); in terms of commutators this also reads

{Qα, Qβ} = iγa
αβ Pa (2.20)

[Qα, Pb] = 0 (2.21)

[Pa, Pb] = 0 (2.22)

4Zαβ in the notations of [23].
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The first extension introduces the generators Za, Zab, Za1...a5 on the r.h.s of (2.20), thus

giving (2.23) below. The second extension introduces the generators Σα, Σa
α, Σa1...a4

α on the

r.h.s of (2.21), thus giving (2.24), but as well non trivial commutators between the Qα and

the generators introduced in the previous step (which cease to be central) (2.25)–(2.27):

{Qα, Qβ}=iγa
αβ Pa + iγa

αβ Za + γab
αβ Zab + iγa1...a5

αβ Za1...a5 (2.23)

[Qα, Pa]=iγaαβ Σβ + γabαβ Σbβ + γab1···b4αβ Σb1···b4β (2.24)

[Qα, Za]=−i (1 − λ − τ) γa
αβ Σβ (2.25)

[

Qα, Zab
]

=
λ

10
γab

αβ Σβ + iγa
αβ Σbβ − 6iγcd

αβΣabcdβ (2.26)

[Qα, Za1...a5 ]=i
τ

720
γa1...a5

αβ Σβ + γa5
αβ Σa1...a4β (2.27)

zero otherwise.

The next extension would introduce new generators Σαβ, Σα1...a3
αβ on the r.h.s. of (2.22) and

also further non–trivial commutators [16].

As we are considering a flat background we cannot consider non commuting trans-

lations; furthermore it was pointed out before [23] that Σαβ is proportional to ωab and

therefore can be set to zero in a flat background. As a consequence we will not consider

this further extension and take the algebra (2.23)–(2.27) as the candidate extension T G̃0

for the reduction of the minimal FDA (2.12)–(2.14) (note that some factors in (2.23)–

(2.27) change with respect to [16] as we are using the conventions of [13]). Introducing the

canonical basis on T ∗G̃0

Ba1...apZb1...bp
= δ

a1...ap

b1...bp
(2.28)

ηα
a1...ap−1

Σ
b1...bp−1

β = δβ
α δ

b1...bp−1
a1...ap−1 ; p = 1, 2, 5 (2.29)

and suppressing the spinorial index α, we can write the following Maurer–Cartan equations:

dV a −
i

2
ψ̄γaψ = 0 (2.30)

dBa −
i

2
ψ̄γaψ = 0 (2.31)

dBa1a2 −
1

2
ψ̄γa1a2ψ = 0 (2.32)

dBa1...a5 −
i

2
ψ̄γa1...a5ψ = 0 (2.33)

dψ = 0 (2.34)

dη + iδ0γaψV a+iδ3γaψBa + δ1γabψBab+ iδ2γa1...a5ψBa1...a5 = 0 (2.35)

dηa1 + γ1γ
a1a2ψVa2 + γ2γa2ψBa1a2 = 0 (2.36)

dηa1...a4 + π1γ
a1...a5ψVa5 + π2γa5ψBa1...a5 + π3γ

[a1a2ψBa3a4] = 0 (2.37)

In order to check the closure (2.4) of (2.30)–(2.37) we need the Fierz identities (A.13)–

(A.15) which impose the following relations:

– 7 –
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δ0 + δ3 + 10δ1 − 720δ2 = 0 (2.38)

γ2 = iγ1 (2.39)

π1 = π2 (2.40)

6iπ2 + π3 = 0 (2.41)

There is some redundancy in the parameters introduced in (2.30)–(2.37), since e.g. δ0, γ1

and π1 can be reabsorbed in the definitions of η, ηa and ηa1...a4 respectively. Due to this

redundancy we are able to chose the same normalization as in [16], i.e.:

δ0 = −
1

2
; δ1 =

λ

20
; δ2 = −

τ

1440
; δ3 =

1

2
(1 − λ − τ); (2.42)

γ1 = −
1

2
; γ2 = −

i

2
; (2.43)

π1 =
1

2
; π2 =

1

2
; π3 = −3i (2.44)

Let us then consider the following expansion for the three–form C in terms of the set

of one forms {V a, Ba1...ap , ψ, ηa1...ap−1}, p = 1, 2, 5:

C(3)=α0B
a1a2Va1Va2 + α1B

a1
a2

Ba2
a3

Ba3
a1

+ α2Bb1a1...a4B
b1
b2

Bb2a1...a4 +

+α3εa1...a5b1...b5mBa1...a5Bb1...b5V m +

+α4εa1...a6b1...b5mBa1a2a3p1p2Ba4a5a6
p1p2

Bb1...b5 +

+α5εa1...a5b1...b5mBa1...a5Bb1...b5Bm +

+α6B
abBavb + α7B

abBaBb +

+β1ψ̄γa1a2η
a1V a2 + β2ψ̄γa1ηa2Ba1a2 + β3ψ̄γa1ηa2...a5B

a1...a5 +

+β4ψ̄γa1a2η
a1a2a3a4Ba3a4 + β5ψ̄γa1...a5η

a1...a4V a5 + β6ψ̄γa1...a4ηa5B
a1...a5 +

+β7ψ̄γa1a2a3ηa3B
a1a2 + β8ψ̄γa1a2η

a1Ba2 + β9ψ̄γa1...a5η
a1...a4Ba5 +

+iβ̂1ψ̄γaηV a + β̂2ψ̄γabηBab + iβ̂3ψ̄γa1...a5ηBa1...a5 + iβ̂4ψ̄γaηBa (2.45)

Imposing (2.14) on (2.45), using the MCE (2.30)–(2.37) and the Fierz identities (A.13)–

(A.15) one obtained a system (B.1)–(B.17) of second order equations for the coefficients

Kijk in the expansion (2.45) that we report in appendix B.

In the following we discuss its solutions for different values of p; the coefficients in

(2.45) for each case are listed in appendix B.

p = 1: there are no solutions to (2.14).

p = 2: we retrieve the algebra of [23] which is given5 by (2.30), (2.32), (2.34), (2.36)

.

5The normalization chosen in [23] is γ1 = 2.
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p = 5: due to the Fierz identity (A.15) it is impossible to satisfy the closure of (2.37)

without introducing the generators p = 2.

p = 1, 2: the algebra is given by (2.30), (2.31), (2.34), (2.35).

p = 1, 5: once again, due to the Fierz identity (A.15) it is impossible to satisfy the

closure of (2.35) without introducing the generators p = 2.

p = 2, 5: the algebra is given by (2.30),–(2.33) and (2.34) –(2.37).

p = 1, 2, 5: the algebra is given by the whole algebra (2.30)–(2.37).

This last case represents the most general solution of (2.11), using the algebra (2.30)–

(2.37). In particular, the corresponding expansion of C (2.45) gives the general structure

for a candidate superfivebrane Wess–Zumino term in flat background.

In fact, as discussed in [25], the problem of reducing a minimal FDA to an ordinary

algebra is mathematically equivalent to that of obtaining strictly invariant Wess–Zumino

terms from the originally quasi–invariant ones. In [26 – 28], strictly invariant Wess–Zumino

terms were proposed; as they include the generators Σαβ they are not suitable to describe

the minimal D = 11 FDA, for which Rab = 0 .

We conclude therefore that being the M–Algebra [16] the most general extension of the

super translational algebra (2.12)–(2.13) and being (2.30)–(2.37) its biggest Inönü–Wigner

contraction allowing for commuting translations and hence for a flat background, we found

the most general solution to the problem of reducing the minimal D = 11 FDA to an

algebra.

At this point, it is natural to consider what happens in the case of non–flat back-

grounds, that is when we allow non–commuting translations, and therefore we must con-

sider the whole M–Algebra. In this case one has to reduce the general D = 11 FDA,

including the contractible generators (field strengths) on the r.h.s of (2.6)–(2.8), (2.11).

Some considerations on the possibility to reduce a non minimal FDA to an algebra will be

discussed in the next section.

3. Reduction of D = 11 FDA and the E11 conjecture

In order to consider non zero curvature and field strengths, we need to reintroduce the

Lorentz generators and modify the minimal FDA (2.6)–(2.8), (2.11) by introducing con-

tractible generators:

DV a −
i

2
ψ̄γaψ = T a (3.1)

dωab − ωa
cω

cb = Rab (3.2)

Dψ = ρ (3.3)

dC −
1

2
ψ̄γabψV aV b = F (3.4)
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The integration conditions of (3.1)–(3.4) are easily obtained

DT a + RabVb − iψ̄γaρ = 0 (3.5)

DRab = 0 (3.6)

dρ +
1

4
Rabγabψ = 0 (3.7)

dF + ψ̄γabψT aV b − ψ̄γabρV aV b = 0 (3.8)

Usually one interprets (3.1)–(3.4) as a ”deformation” of the minimal FDA, where the

curvature on the r.h.s. represent the fluctuations of the fields on the vacuum described

by the minimal FDA, and the integration conditions (3.5)–(3.8) represent their Bianchi

identities.

It is clear that the group manifold G̃0, whose cotangent space T G̃0 is spanned by

{V a, Ba, Bab, Ba1...a5 , ψ, η, ηa, ηa1...α4} ≡ {σi} , (3.9)

where the one–forms (3.9) satisfy (2.30)–(2.37), is unsuitable to describe (3.1)–(3.8).

The standard approach [15] is to deform the group manifold G̃0 to a ”soft group mani-

fold” G̃
(soft)
0 . The cotangent bundle of the soft group manifold T ∗G̃

(soft)
0 is spanned by the

same generators (3.9) of T ∗G̃0 but the left invariance condition is relaxed, that is they do

not fulfill the Maurer–Cartan equations (2.30)–(2.37). Instead they satisfy

dσ̃i −
1

2
ci

kjσ̃
j σ̃k = F i (3.10)

where we have denoted by {σ̃i} the soft forms the basis of T ∗G̃
(soft)
0 . The presence of a

curvature term on the r.h.s. has a counterpart in the appearance of curvature terms in the

minimal FDA (2.6)–(2.8), (2.11), thus giving (3.1)–(3.4). The curvature in (3.10) can be

expanded on T ∗G̃
(soft)
0 according to

F i = F i
j1...jn

σ̃j1 . . . σ̃jn (3.11)

where the F i
j1...jn

depend on the coordinates of G̃
(soft)
0 . The expansion (3.11) fulfills the

Bianchi identities (3.5)–(3.8) provided the F i
j1...jn

satisfies some differential relations which

turn out to be the equations of motion once a Lagrangian formulation is given.

The parametrization (3.11) it is known as rheonomic parametrization and encodes the

supersymmetry transformation laws. A short account is given in appendix C.

As pointed out in [17], given (3.1)–(3.8), from the mathematical point of view it is more

appropriate to consider T a, Rab, ρ, F as contractible generators which extend the minimal

FDA (2.6)–(2.8), (2.11); consequently (3.5)–(3.8) are further equations of the FDA on the

same footing as (3.1)–(3.4).

Within this approach it is quite natural to wonder if the FDA (3.1)–(3.8) is equivalent

to an algebra obtained by further extending T G̃0, which reduces to T G̃0 when the con-

tractible generators are set to zero. This would imply that there exist a group manifold

GK ⊃ G̃0 such that we can expand the contractible generators F i on a basis {ωI} ⊃ {σi},

I = 1, . . . dimGK , of T ∗GK

F i = f i
J1...Jn

ωJ1 . . . ωJn (3.12)
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with constant f i
J1...Jn

.

A good candidate would be therefore the whole M–Algebra [16], since the next central

extension of (2.23)–(2.27) will introduce e.g. the generator Σαβ which are non zero in a

non trivial background. Nevertheless, it is easy to show that the M–Algebra is certainly

not sufficient to describe, for instance, the contractible generator F (3.4).

To show this, let us preliminary observe that in the FDA (3.1)–(3.8) we can set consis-

tently to zero any of the contractible generators; therefore we can limit ourself to studying

the case where only F is present. This means that since the Σαβ generators are related to

the presence of Rab, they should play no crucial role in the decomposition of F .

In order to understand this point, let us have a closer look at the expansion of C in

(2.45): if we denote by {ZM} the coordinates on G̃0, the one–forms (3.9) can be expressed

in components as

V a = V a
MdZM , Bab = Bab

MdZM , . . . (3.13)

and the space–time components of C can be easily read off

C = dxµ ∧ dxν ∧ dxρ(α0Bµνρ + α1Bµσ1σ2B
σ2σ3

ν B σ1
ρσ3

+ . . .) (3.14)

where

Bµνρ ≡ BabµV a
ν V b

ρ . (3.15)

If we include further generators, it is plausible to expect that extra terms proportional to

these latter may arise in the decomposition of C and especially that they will take part in

the decomposition of F .

Focusing on the bosonic part of F we see from (3.4) and (3.8) that it has to satisfy

F|bos = dC|bos ; dF|bos = 0 (3.16)

where with ”|bos” we indicate the restriction to the bosonic terms.

It is immediate to see that every three–form C one can construct using as building

blocks the one–forms (3.9) satisfying (2.30)–(2.37) will always give dC|bos = 0, thus being

unsuitable for our purposes, as we clearly cannot accept that F has no bosonic space–time

components.

It is also easy to see that the introduction of one–forms dual to the generators Σαβ

and Σabc
αβ , or generators in subsequent extensions of the M–Algebra would not be helpful,

as we expected.

Indeed, if we consider a further term ∆C in the expansion of C (2.45) like

∆C ∝ γαβ
a ΣαβBabVb (3.17)

being

dΣαβ = −
1

2
VaVbγ

ab
αβ +

1

2
BabV

aγb
αβ +

i

4
ηaγψγγa

αβ + iηa αψγγa
βγ + iηa βψγγa

αγ (3.18)

we would obtain contributions to F|bos of the form

F|bos ∝ BabB
bcV aVc . (3.19)
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If this were the case there would not exist a limit in which setting F to zero we would

retrieve the algebra (2.30)–(2.34).

In order to give appropriate contributions to F|bos, we would need

dV a
|bos 6= 0; dBa

|bos 6= 0; dBab
|bos 6= 0; dBa1...a5

|bos
6= 0 (3.20)

where the nonzero term on the r.h.s. has to contain new generators other than (3.9), which

implies that at least one generator among Pa, Za , Zab and Za1...a5 has to arise as the

commutator of two bosonic generators, which is not the case in the M–Algebra [16].

A plausible scenario is the action of an automorphism group on the M–Algebra. In-

deed, consider the automorphism algebra of (2.22)–(2.23): if we define a generator Zαβ

symmetric in the spinorial indexes

Zαβ = iPaγ
a
αβ + iZaγ

a
αβ + Zabγ

ab
αβ + iZa1...a5γ

a1...a5
αβ (3.21)

we can rewrite (2.22)–(2.23) in a compact form

{Qα, Qβ} = Zαβ (3.22)

Consider the action of a generator R β
α on (3.22), [19]:

[Qα, R δ
γ ] = δδ

αQγ ; [Zαβ , R δ
γ ] = δδ

αZγβ + δδ
βZγα (3.23)

which further satisfies:

[R β
α , R δ

γ ] = δα
δ R β

γ + δβ
γ R α

δ (3.24)

As R β
α does not have a definite symmetry, it can be expanded as

R β
α = (γa1...aq) β

α Ra1...aq ; q = 0, . . . 10 (3.25)

One can see e.g. that for q = 2 one retrieves the action of the Lorentz generators Ma1a2 . If

we interpret {Pa, Zab, Za1...a5} as the completely antisymmetric generators at the levels6

` = 7, 8, 9 of E11 we can see that the action of the generators Ma1a2 Ra1a2a3 and Ra1...a6

at the levels ` = 0, 1, 2 respectively, is given by [30]:

DBa1a2

|bos
+ Aa1a2a3Va3 = 0 (3.26)

DBa1...a5

|bos
+ Aa1...a6Va6 + A[a1a2a3Ba4a5] = 0 (3.27)

DAa1a2a3

|bos
= 0 (3.28)

DAa1...a6

|bos
+ A[a1a2a3Aa4a5a6] = 0 (3.29)

where we have defined the dual one-forms according to

Aa1...a3Rb1...b3 = δa1...a3
b1...b3

; Aa1...a6Rb1...b6 = δa1...a6
b1...b6

(3.30)

and D is defined in (2.9).

6according to the labels of [29].
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In this case the bosonic components of F , (3.4), can be obtained by differentiating

(2.45) and using (3.26) and (3.27). The space–time components are read off as before:

F|bos = dxµdxνdxρdxτ (−α0Aµνρτ − 3α1Aµνσ1σ2B
σ2σ3

ρ B σ1
τσ3

+ . . .) (3.31)

with

Aµνρτ ≡ AabcµV a
ν V b

ρ V c
τ . (3.32)

The bosonic Bianchi identity dF|bos = 0 is a consequence of the closure of the algebra

(3.26)–(3.29).

The possibility to use (3.26)–(3.29) to describe the bosonic D = 11 FDA in the presence

of the contractible generator F , is intriguing as it suggests that non trivial backgrounds

of D = 11 supergravity enjoy (low level) E11 symmetry and that this is encoded in the

D = 11 FDA (3.1)–(3.8).

Unlike the non linear realizations where the generators Ra1a2a3 and Ra1...a6 are asso-

ciated to the three–form C and its dual six–form C̃ respectively, we interpret Ra1a2a3 and

Ra1...a6 and their dual one–forms Aa1a2a3 and Aa1...a6 (3.30) as elements of T GK and T ∗GK

respectively, where GK is a group manifold on which D = 11 supergravity is formulated.

The one–forms Aa1a2a3 and Aa1...a6 are not seen as physical fields; instead they are part of

the composite structure of F , just like the one–forms (3.9) of the composite structure of

C [21].

4. Conclusions and outlook

In this paper we reconsidered the problem of reducing the Free Differential Algebra of D =

11 supergravity to an ordinary algebra. We addressed separately the case of the minimal

and the general FDA, where the contractible generators represent the field strengths.

For the minimal FDA, instead of looking for the simplest solution as it was done so far,

we tried to find the most general one. For this reason we considered as candidate algebra

the M–Algebra, which is the biggest extension of the D = 11 super translational algebra.

In this respect we considered its biggest Inönü–Wigner contraction admitting commuting

translations (2.23)–(2.27) and showed the equivalence with the minimal D = 11 FDA.

It is interesting to observe that the D = 11 FDA already encodes information on non

perturbative states like the M2 and M5 branes, as one can see from equation (2.23). It is

in fact well known [31] that the presence of supersymmetric extended objects modifies the

super Poincaré algebra by introducing topological charges, e.g. (2.23).

For the general FDA we limited ourself to take in consideration the contractible gener-

ator F and to study the problem at the bosonic level. We found that a convincing scenario

is to consider the action of the automorphism group proposed in [19] and we showed that in

a flat background the lowest levels of E11 can describe the reduction of the bosonic D = 11

FDA to an algebra.

This partial result suggests that the E11 symmetry, which acts as well on perturbative

states, is already encoded in the D = 11 FDA and is made explicit when the theory is

formulated on a suitable group manifold GK , using as vector potentials a basis of one–

forms on the cotangent space T ∗GK .
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To complete the picture, there is a certain number of issues that need to be addressed.

The first one would obviously be to go through the reduction of the FDA in the presence of

the sole contractible generator F considering also the fermionic sector; that is, considering

the action of the automorphism group on the whole G̃0. Afterwards, to address the problem

in the presence of all the contractible generators.

Another important point is that, contrary to the rheonomic parametrizations on the

soft group manifold, the formulation on the enlarged group GK does not enforce the equa-

tions of motion. If we want to recover this piece of information, we need a democratic

formulation of the D = 11 FDA, where for each field, included for the gravitational d.o.f.,

the corresponding dual is introduced. In case the democratic D = 11 FDA can be reduced

to an algebra, this would encode all the dynamics of D = 11 supergravity. This last point

would be of particular relevance as it would make unnecessary the existence of an action.

We hope to report soon on these issues [32] .
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A. Fierz identities

In this appendix we present the Fierz identities that have been used in the paper.

We indicate with Ξ
(4224)
a1...α5 , Ξ

(1408)
a1a2 , Ξ

(320)
a , Ξ(32) the irreducible SO(1, 10) fermionic rep-

resentations (3
2 )5, (3

2 )2(1
2)3, (3

2 )(1
2 )4, (1

2 )5 respectively [13]

γa1Ξ(4224)
a1...α5

= γa1Ξ(1408)
a1a2

= γaΞ(320)
a = 0 (A.1)

ψψ̄γaψ=Ξ(320)
a +

1

11
γaΞ

(32) (A.2)

ψψ̄γabψ=Ξ
(1408)
ab −

2

9
γ[aΞ

(320)
b] +

1

11
γabΞ

(32) (A.3)

ψψ̄γa1...a5ψ=Ξ(4224)
a1...α5

+2γ[a1a2a3
Ξ

(1408)
a4a5] +

5

9
γ[a1...a4

Ξ
(320)
a5] −

1

77
γa1...a5Ξ

(32) (A.4)
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γaψψ̄γaψ=Ξ(32) (A.5)

γabψψ̄γabψ=−10Ξ(32) (A.6)

γa1...a5ψψ̄γa1...a5ψ=−720Ξ(32) (A.7)

γabψψ̄γbψ=−Ξ(320)
a +

10

11
γaΞ

(32) (A.8)

γbψψ̄γabψ=Ξ(320)
a −

10

11
γaΞ

(32) (A.9)

γa5ψψ̄γa1...a5ψ=6γ[a1a2
Ξ

(1408)
a3a4] +

24

9
γ[a1a2a3

Ξ
(320)
a4] −

1

11
γa1...a4Ξ

(32) (A.10)

γa1...a5ψψ̄γa5ψ=−4γ[a1a2a3
Ξ

(320)
a4] +

7

11
γa1...a4Ξ

(32) (A.11)

γ[a1a2
ψψ̄γa3a4]ψ=γ[a1a2

Ξ
(1408)
a3a4] −

2

9
γ[a1a2a3

Ξ
(320)
a4]

+
1

11
γa1...a4Ξ

(32) (A.12)

γaψψ̄γaψ = −
1

10
γabψψ̄γabψ = −

1

720
γa1...a5ψψ̄γa1...a5ψ (A.13)

γabψψ̄γbψ + γbψψ̄γabψ = 0 (A.14)

γa5ψψ̄γa1...a5ψ + γa1...a5ψψ̄γa5ψ − 6γ[a1a2
ψψ̄γa3a4]ψ = 0 (A.15)

ψ̄γaψψ̄γabψ = 0 (A.16)

B. Decomposition of the three–form C

In this appendix we present the system of equation obtained inserting the ansatz (2.45)

into equation (2.11) and its solutions for different values of p.

The system:

α0

2
− 3024π1β5 + 9β1γ1 + β̂1δ0 =

1

2
(B.1)

α6

2
− 3024π1β9 + 9β8γ1 + β̂4δ0 + β̂1δ3 = 0 (B.2)

1

2
α7 + β̂4δ3 = 0 (B.3)

−iα0 −
i

2
α6 − β2γ1 − 18β7γ1 + β1γ2 − 2iβ̂2δ0 − 2iβ̂1δ1 = 0 (B.4)

i

2
α6 + iα7 − β8γ2 + 2iβ̂4δ1 + 2iβ̂2δ3 = 0 (B.5)

−
1

2
β̂1 − 5β̂2 + 360β̂3 −

1

2
β̂4 = 0 (B.6)

−120α3 − π1β3 − π2β5 − β6γ1 + β̂3δ0 + β̂1δ2 = 0 (B.7)

−120α5 − π2β9 + β̂4δ2 + β̂3δ3 = 0 (B.8)

3

2
α1 +

16

3
π5β4 + β2γ2 + 2β7γ2 + 4β̂2δ1 = 0 (B.9)
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1

2
α3 +

1

2
α5 − β̂3δ2 = 0 (B.10)

1

2
α2 + π2β3 − 600β̂3δ2 = 0 (B.11)

1

2
α4 +

5

3
β̂3δ2 = 0 (B.12)

iα2 − β6γ2 − 10iβ̂3δ1 − 10iβ̂2δ2 = 0 (B.13)

iβ3 − i (β5 + β9) = 0 (B.14)

iβ3 +
1

6
β4 = 0 (B.15)

−β2 − 336iβ6 + 2β7 − i (β1 + β8) = 0 (B.16)

10β2 + 720iβ6 + 90β7 + 10i (β1 + β8) = 0 (B.17)

The solutions:

p = 2: the decomposition of C is given by (2.45) with

α0 =
1

10
; α1 = −

1

30
; β1 = −

1

10
; β2 =

i

10
(B.18)

and zero otherwise.

p = 1, 2: the decomposition of C is given by (2.45) with

α0 =
1

50
(5 − 50 β̂1 + 54λ β̂1 − 540 β̂2 + 540λ β̂2)

α1 =
1

30
(−1 − 8λ β̂2)

α6 = −
2

25

(

−25 β̂1 + 26λ β̂1 − 260 β̂2 + 270λ β̂2

)

α7 = −β̂1 + λ β̂1 − 10 β̂2 + 10λ β̂2

β1 =
1

50

(

−5 + 6λ β̂1 − 60 β̂2 + 60λ β̂2

)

β2 =
i

10

(

1 + 12λ β̂2

)

β8 = −
3

25

(

λ β̂1 − 10 β̂2 + 20λ β̂2

)

β̂4 = −β̂1 − 10 β̂2 (B.19)

and arbitrary λ, β̂1, β̂2, zero otherwise.

p = 2, 5: the decomposition of C is given by (2.45) with

α0 =
1

10
− 9iβ7; α1 = −

1

30
−

8

3
iβ7; α2 = −

i

48
β7;

β1 = −
1

10
+ 6iβ7; β2 =

i

10
− 6β7; β3 = −

i

48
β7;

β4 = −
1

8
β7; β5 = −

i

48
β7; β6 = −

i

24
β7 (B.20)
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with arbitrary β7, zero otherwise.

p = 1, 2, 5: the decomposition of C is given by (2.45) with

α0 =
1

20

[

−1 + (−20 + 24λ + 20τ) β̂1 + (−240 + 228λ + 230τ) β̂2 +

+ (14400 − 16560λ − 16200τ) β̂3 − 30β1 − 10β8

]

α1 =
1

90

[

−7 + (−72λ + 30τ) β̂2 − (2160λ + 7800τ) β̂3 − 40β1 − 40β8

]

α2 =
1

4 · 6!

[

1 + (12λ + 10τ) β̂2 + (−720λ + 1800τ) β̂3 + 10β1 + 10β8

]

α3 =
2

10!

[

(−3λ + 8τ) β̂1 + (30 − 60λ + 50τ) β̂2+

+ (5760 − 3600λ − 9000τ) β̂3 − 25β8

]

α4 =−
1

432
τ β̂3

α5 =
2

10!

[

(3λ − 8τ) β̂1 + (−30 + 60λ − 50τ) β̂2+

+ (−5760 + 3600λ + 11520τ) β̂3 + 25β8

]

α6 =
1

5

[

(10 − 11λ − 10τ) β̂1 + (110 − 120λ − 110τ) β̂2+

+ (−7200 + 7920λ + 7200τ) β̂3 − 5β8

]

α7 =
[

(−1 + λ + τ) β̂1 + (−10 + 10λ + 10τ) β̂2 + (720 − 720λ − 720τ) β̂3

]

β2 =
i

5

[

1 + (12λ − 10τ) β̂2 + (720λ + 1800τ) β̂3 + 5β1 + 5β8

]

β3 =
1

4 · 6!

[

−1 + (−12λ − 10τ) β̂2 + (720λ + 600τ) β̂3 − 10β1 − 10β8

]

β4 =
i

480

[

1 + (12λ + 10τ) β̂2 + (−720λ − 600τ) β̂3 + 10β1 + 10β8

]

β5 =
6

9!

[

−21 + (24λ + 20τ) β̂1 + (−240 + 228λ + 230τ) β̂2 +

+ (14400 − 16560λ − 16200τ) β̂3 − 210β1 − 10β8

]

β6 =
1

2 · 6!

[

−1 + (−12λ + 10τ) β̂2 + (−720λ − 1800τ) β̂3 − 10β1 − 10β8

]

β7 =−
i

60

[

1 + (12λ − 10τ) β̂2 + (720λ + 1800τ) β̂3 + 10β1 + 10β8

]

β9 =
1

3 · 7!

[

(−6λ − 5τ) β̂1 + (60 − 120λ − 110τ) β̂2+

+ (−3600 + 7920λ + 7200τ) β̂3 − 50β8

]

β̂4 =−β̂1 − 10β̂2 + 720β̂3 (B.21)

With arbitrary λ, τ , β1, β8, β̂1, β̂2, β̂3.
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C. Rheonomic parametrisations

For sake of completeness we present the rheonomic parametrization of the D = 11 super-

curvatures [13].

T a=0 (C.1)

Rab=Rab
cdV

cV d + i(2ρ̄c[aγb] − ρ̄abγc)ψV c + F abcdψ̄γcdψ +

+
1

24
Fcdef ψ̄γabcdefψ (C.2)

ρ=ρabV
aV b +

i

3
(Fabcdγ

bcd −
1

8
Fbcdeγ

bcde
a )ψV a (C.3)

F=FabcdV
aV bV cV d (C.4)

In order (C.1)–(C.4) to satisfy the Bianchi identities (3.5)–(3.8), Rab
cd, ρab, Fabcd has

to satisfy the propagation equations

Rac
bc −

1

2
δa
b R − 3F a

cdeFbcde +
3

8
δa
b F cdefFcdef = 0 (C.5)

γabcρbc = 0 (C.6)

∂mFmabc −
1

2 · 4! · 7!
εabcdefghijklFefghFijkl = 0 (C.7)

The determination of the supersymmetry transformation laws from the rheonomic

parametrizations is obtained considering the Lie derivative along the tangent vector

ε = ε ~D (C.8)

where ~D is dual to the gravitino one–form ψ. Denoting by µI the p–form potentials and

with F I the p + 1–forms field strengths, one has:

`µI = (iε d + d iε)µ
I ≡ (Dε)I + iεF

I (C.9)

where D is the covariant derivative (2.9) and iε is the contraction operator along the vector

ε.
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